Tokens

Tokens Tokens

Aviso: Este post foi traduzido para o português usando um modelo de tradução automática. Por favor, me avise se encontrar algum erro.

Agora que os LLMs estão em alta, não paramos de ouvir o número de tokens que cada modelo suporta, mas o que são os tokens? São as unidades mínimas de representação das palavras

Para explicar o que são os tokens, primeiro vejamos com um exemplo prático, vamos usar o tokenizador de OpenAI, chamado tiktoken.

Então, primeiro instalamos o pacote:

pip install tiktoken

Uma vez instalado, criamos um tokenizador usando o modelo cl100k_base, que no notebook de exemplo How to count tokens with tiktoken explica que é o usado pelos modelos gpt-4, gpt-3.5-turbo e text-embedding-ada-002

	
import tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
Copy

Agora criamos uma palavra de exemplo para tokenizá-la

	
example_word = "breakdown"
Copy

E tokenizamos

	
tokens = encoder.encode(example_word)
tokens
Copy
	
[9137, 2996]

A palavra foi dividida em 2 tokens, o 9137 e o 2996. Vamos ver a quais palavras correspondem.

	
word1 = encoder.decode([tokens[0]])
word2 = encoder.decode([tokens[1]])
word1, word2
Copy
	
('break', 'down')

O tokenizador da OpenAI dividiu a palavra breakdown nas palavras break e down. Ou seja, ele dividiu a palavra em 2 mais simples.

Isto é importante, pois quando se diz que um LLM suporta x tokens, não significa que ele suporta x palavras, mas sim que ele suporta x unidades mínimas de representação das palavras.

Se você tem um texto e quer ver o número de tokens que ele possui para o tokenizador de OpenAI, pode verificar na página Tokenizer, que mostra cada token em uma cor diferente.

tokenizer

Vimos o tokenizador da OpenAI, mas cada LLM poderá usar outro.

Como dissemos, os tokens são as unidades mínimas de representação das palavras, então vamos ver quantos tokens distintos tem tiktoken

	
n_vocab = encoder.n_vocab
print(f"Vocab size: {n_vocab}")
Copy
	
Vocab size: 100277

Vamos a ver como tokeniza outro tipo de palavras

	
def encode_decode(word):
tokens = encoder.encode(word)
decode_tokens = []
for token in tokens:
decode_tokens.append(encoder.decode([token]))
return tokens, decode_tokens
Copy
	
word = "dog"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "tomorrow..."
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "artificial intelligence"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "Python"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "12/25/2023"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "😊"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
Copy
	
Word: dog ==> tokens: [18964], decode_tokens: ['dog']
Word: tomorrow... ==> tokens: [38501, 7924, 1131], decode_tokens: ['tom', 'orrow', '...']
Word: artificial intelligence ==> tokens: [472, 16895, 11478], decode_tokens: ['art', 'ificial', ' intelligence']
Word: Python ==> tokens: [31380], decode_tokens: ['Python']
Word: 12/25/2023 ==> tokens: [717, 14, 914, 14, 2366, 18], decode_tokens: ['12', '/', '25', '/', '202', '3']
Word: 😊 ==> tokens: [76460, 232], decode_tokens: ['�', '�']

Por último vamos a vê-lo com palavras em outro idioma

	
word = "perro"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "perra"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "mañana..."
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "inteligencia artificial"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "Python"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "12/25/2023"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
word = "😊"
tokens, decode_tokens = encode_decode(word)
print(f"Word: {word} ==> tokens: {tokens}, decode_tokens: {decode_tokens}")
Copy
	
Word: perro ==> tokens: [716, 299], decode_tokens: ['per', 'ro']
Word: perra ==> tokens: [79, 14210], decode_tokens: ['p', 'erra']
Word: mañana... ==> tokens: [1764, 88184, 1131], decode_tokens: ['ma', 'ñana', '...']
Word: inteligencia artificial ==> tokens: [396, 39567, 8968, 21075], decode_tokens: ['int', 'elig', 'encia', ' artificial']
Word: Python ==> tokens: [31380], decode_tokens: ['Python']
Word: 12/25/2023 ==> tokens: [717, 14, 914, 14, 2366, 18], decode_tokens: ['12', '/', '25', '/', '202', '3']
Word: 😊 ==> tokens: [76460, 232], decode_tokens: ['�', '�']

Podemos ver para palavras semelhantes, em espanhol são gerados mais tokens do que em inglês, portanto, para um mesmo texto, com um número similar de palavras, o número de tokens será maior em espanhol do que em inglês.

Continuar lendo

Últimos posts -->

Você viu esses projetos?

Horeca chatbot

Horeca chatbot Horeca chatbot
Python
LangChain
PostgreSQL
PGVector
React
Kubernetes
Docker
GitHub Actions

Chatbot conversacional para cozinheiros de hotéis e restaurantes. Um cozinheiro, gerente de cozinha ou serviço de quarto de um hotel ou restaurante pode falar com o chatbot para obter informações sobre receitas e menus. Mas também implementa agentes, com os quais pode editar ou criar novas receitas ou menus

Naviground

Naviground Naviground

Subtify

Subtify Subtify
Python
Whisper
Spaces

Gerador de legendas para vídeos no idioma que você desejar. Além disso, coloca uma legenda de cor diferente para cada pessoa

Ver todos os projetos -->

Quer aplicar IA no seu projeto? Entre em contato!

Quer melhorar com essas dicas?

Últimos tips -->

Use isso localmente

Os espaços do Hugging Face nos permitem executar modelos com demos muito simples, mas e se a demo quebrar? Ou se o usuário a deletar? Por isso, criei contêineres docker com alguns espaços interessantes, para poder usá-los localmente, aconteça o que acontecer. Na verdade, se você clicar em qualquer botão de visualização de projeto, ele pode levá-lo a um espaço que não funciona.

Flow edit

Flow edit Flow edit

Edite imagens com este modelo de Flow. Baseado em SD3 ou FLUX, você pode editar qualquer imagem e gerar novas

FLUX.1-RealismLora

FLUX.1-RealismLora FLUX.1-RealismLora
Ver todos os contêineres -->

Quer aplicar IA no seu projeto? Entre em contato!

Você quer treinar seu modelo com esses datasets?

short-jokes-dataset

Dataset com piadas em inglês

opus100

Dataset com traduções de inglês para espanhol

netflix_titles

Dataset com filmes e séries da Netflix

Ver mais datasets -->