Elicitación MCP: Implementar Elicitación en Servidores con FastMCP y Python

Elicitación MCP: Implementar Elicitación en Servidores con FastMCP y Python Elicitación MCP: Implementar Elicitación en Servidores con FastMCP y Python

En este post vamos a ver cómo desarrollar un servidor y un cliente MCP con elicitación. Y si a ti también te pasa que no tienes ni idea de lo que es elicitación, no te preocupes, que ya te lo cuento. Elicitación es cuando el servidor necesita información por parte del usuario, así que a través del cliente se la pide al usuario

Servidor MCP con elicitaciónlink image 1

Vamos a crear un servidor MCP que actúa como un buscador de viajes. Así que irá pidiéndole datos al usuario. Todos los posibles viajes van a estar guardados en una variable, no va a ser un buscador real, es un ejemplo para mostrar la elicitación.

Implementación del servidor con elicitaciónlink image 2

Creamos dos clases de tipo enum para definir los diferentes tipos de viajes y los rangos de presupuesto.

Creamos un diccionario para guardar todos los posibles viajes.

Creamos una función para extraer el valor de la respuesta de la elicitación.

Y por último, implementamos la función intelligent_travel_booking_agent que es la tool que va a ir pidiendo los datos al usuario y va a ir guardando los resultados en una variable.

La función va mandando las preguntas al cliente, para que el cliente se las pueda mandar al usuario. El usuario responderá y el cliente mandará la respuesta al servidor.

En el momento en el que tenga los datos necesarios del cliente, le "buscará" el viaje que mejor se adapte a sus necesidades.

Crear entorno virtual del servidorlink image 3

Primero creamos la carpeta donde lo vamos a desarrollar

	
!mkdir MCP_elicitation_server
Copied

Creamos el entorno con uv

	
!cd MCP_elicitation_server && uv init .
Copied
	
Initialized project `mcp-elicitation-server` at `/Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_server`

Lo iniciamos

	
!cd MCP_elicitation_server && uv venv
Copied
	
Using CPython 3.12.8
Creating virtual environment at: .venv
Activate with: source .venv/bin/activate

Instalamos las librerías necesarias

	
!cd MCP_elicitation_server && uv add fastmcp
Copied
	
Resolved 64 packages in 210ms
⠙ Preparing packages... (0/11) ⠋ Preparing packages... (0/0)
⠙ Preparing packages... (0/11)------------- 0 B/68.03 KiB
⠙ Preparing packages... (0/11)------------- 14.88 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.88 KiB/68.03 KiB
jsonschema-specifications ------------------------------ 0 B/18.00 KiB
⠙ Preparing packages... (0/11)------------------ 14.88 KiB/68.03 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
⠙ Preparing packages... (0/11)------------------ 14.88 KiB/68.03 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
⠙ Preparing packages... (0/11)------------------ 14.88 KiB/68.03 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
⠙ Preparing packages... (0/11)------------------ 14.88 KiB/68.03 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 14.88 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 0 B/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 14.88 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 30.88 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 46.88 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 62.88 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 68.03 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 68.03 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 68.03 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 68.03 KiB/68.03 KiB
⠙ Preparing packages... (0/11)------------------ 14.89 KiB/115.37 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
more-itertools ------------------------------ 68.03 KiB/68.03 KiB
pycparser ------------------------------ 14.89 KiB/115.37 KiB
⠙ Preparing packages... (0/11)------------------ 0 B/434.43 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
starlette ------------------------------ 14.89 KiB/72.01 KiB
cyclopts ------------------------------ 0 B/84.13 KiB
pycparser ------------------------------ 30.89 KiB/115.37 KiB
cffi ------------------------------ 14.92 KiB/176.80 KiB
⠙ Preparing packages... (0/11)------------------ 0 B/434.43 KiB
jsonschema-specifications ------------------------------ 14.87 KiB/18.00 KiB
starlette ------------------------------ 14.89 KiB/72.01 KiB
cyclopts ------------------------------ 0 B/84.13 KiB
pycparser ------------------------------ 46.89 KiB/115.37 KiB
cffi ------------------------------ 14.92 KiB/176.80 KiB
⠙ Preparing packages... (0/11)------------------ 0 B/434.43 KiB
starlette ------------------------------ 14.89 KiB/72.01 KiB
cyclopts ------------------------------ 0 B/84.13 KiB
pycparser ------------------------------ 78.89 KiB/115.37 KiB
mcp ------------------------------ 0 B/159.97 KiB
cffi ------------------------------ 14.92 KiB/176.80 KiB
dnspython ------------------------------ 0 B/323.33 KiB
pydantic ------------------------------ 0 B/434.43 KiB
⠙ Preparing packages... (0/11)------------------ 0 B/6.71 MiB
starlette ------------------------------ 46.89 KiB/72.01 KiB
cyclopts ------------------------------ 32.00 KiB/84.13 KiB
mcp ------------------------------ 32.00 KiB/159.97 KiB
cffi ------------------------------ 63.62 KiB/176.80 KiB
dnspython ------------------------------ 46.78 KiB/323.33 KiB
pydantic ------------------------------ 32.87 KiB/434.43 KiB
⠙ Preparing packages... (0/11)------------------ 30.88 KiB/6.71 MiB
cyclopts ------------------------------ 59.40 KiB/84.13 KiB
mcp ------------------------------ 64.00 KiB/159.97 KiB
cffi ------------------------------ 63.62 KiB/176.80 KiB
dnspython ------------------------------ 46.78 KiB/323.33 KiB
pydantic ------------------------------ 62.42 KiB/434.43 KiB
⠙ Preparing packages... (0/11)------------------ 46.88 KiB/6.71 MiB
mcp ------------------------------ 96.00 KiB/159.97 KiB
cffi ------------------------------ 127.62 KiB/176.80 KiB
fastmcp ------------------------------ 30.89 KiB/306.67 KiB
dnspython ------------------------------ 110.89 KiB/323.33 KiB
pydantic ------------------------------ 154.40 KiB/434.43 KiB
⠙ Preparing packages... (0/11)------------------ 78.88 KiB/6.71 MiB
mcp ------------------------------ 159.97 KiB/159.97 KiB
fastmcp ------------------------------ 94.89 KiB/306.67 KiB
dnspython ------------------------------ 206.89 KiB/323.33 KiB
pydantic ------------------------------ 222.42 KiB/434.43 KiB
⠙ Preparing packages... (0/11)------------------ 122.63 KiB/6.71 MiB
mcp ------------------------------ 159.97 KiB/159.97 KiB
fastmcp ------------------------------ 110.89 KiB/306.67 KiB
dnspython ------------------------------ 222.89 KiB/323.33 KiB
pydantic ------------------------------ 238.42 KiB/434.43 KiB
⠙ Preparing packages... (0/11)------------------ 142.88 KiB/6.71 MiB
fastmcp ------------------------------ 110.89 KiB/306.67 KiB
dnspython ------------------------------ 222.89 KiB/323.33 KiB
pydantic ------------------------------ 238.42 KiB/434.43 KiB
⠙ Preparing packages... (0/11)------------------ 411.17 KiB/6.71 MiB
fastmcp ------------------------------ 206.68 KiB/306.67 KiB
dnspython ------------------------------ 254.89 KiB/323.33 KiB
pydantic ------------------------------ 318.10 KiB/434.43 KiB
⠙ Preparing packages... (0/11)[2m--------------- 3.25 MiB/6.71 MiB
fastmcp ------------------------------ 222.89 KiB/306.67 KiB
dnspython ------------------------------ 270.89 KiB/323.33 KiB
⠙ Preparing packages... (0/11)-------------- 366.42 KiB/434.43 KiB
fastmcp ------------------------------ 238.89 KiB/306.67 KiB
dnspython ------------------------------ 270.89 KiB/323.33 KiB
⠹ Preparing packages... (8/11)-------------- 382.42 KiB/434.43 KiB
fastmcp ------------------------------ 254.89 KiB/306.67 KiB
⠹ Preparing packages... (8/11)-------------- 286.89 KiB/323.33 KiB
Prepared 11 packages in 212ms
Installed 61 packages in 149ms
+ annotated-types==0.7.0
+ anyio==4.10.0
+ attrs==25.3.0
+ authlib==1.6.3
+ certifi==2025.8.3
+ cffi==2.0.0
+ charset-normalizer==3.4.3
+ click==8.2.1
+ cryptography==45.0.7
+ cyclopts==3.24.0
+ dnspython==2.8.0
+ docstring-parser==0.17.0
+ docutils==0.22
+ email-validator==2.3.0
+ exceptiongroup==1.3.0
+ fastmcp==2.12.3
+ h11==0.16.0
+ httpcore==1.0.9
+ httpx==0.28.1
+ httpx-sse==0.4.1
+ idna==3.10
+ isodate==0.7.2
+ jsonschema==4.25.1
+ jsonschema-path==0.3.4
+ jsonschema-specifications==2025.9.1
+ lazy-object-proxy==1.12.0
+ markdown-it-py==4.0.0
+ markupsafe==3.0.2
+ mcp==1.14.0
+ mdurl==0.1.2
+ more-itertools==10.8.0
+ openapi-core==0.19.5
+ openapi-pydantic==0.5.1
+ openapi-schema-validator==0.6.3
+ openapi-spec-validator==0.7.2
+ parse==1.20.2
+ pathable==0.4.4
+ pycparser==2.23
+ pydantic==2.11.9
+ pydantic-core==2.33.2
+ pydantic-settings==2.10.1
+ pygments==2.19.2
+ pyperclip==1.9.0
+ python-dotenv==1.1.1
+ python-multipart==0.0.20
+ pyyaml==6.0.2
+ referencing==0.36.2
+ requests==2.32.5
+ rfc3339-validator==0.1.4
+ rich==14.1.0
+ rich-rst==1.3.1
+ rpds-py==0.27.1
+ six==1.17.0
+ sniffio==1.3.1
+ sse-starlette==3.0.2
+ starlette==0.48.0
+ typing-extensions==4.15.0
+ typing-inspection==0.4.1
+ urllib3==2.5.0
+ uvicorn==0.35.0
+ werkzeug==3.1.1

Código del servidorlink image 4

	
%%writefile MCP_elicitation_server/server.py
"""
MCP Multi-Turn server with Elicitation + Sampling
============================================================
This server demonstrates the use of elicitacion and sampling
to create an intelligent travel booking agent that:
1. Requests information from the user (elicitacion)
2. Generates AI content to improve the experience (sampling)
3. Confirms critical decisions (elicitacion)
4. Personalizes recommendations (sampling)
Use case: Intelligent travel booking agent that uses AI to personalize recommendations and elicitacion for critical confirmations.
Usage:
python server.py
"""
import asyncio
import json
from typing import Any, Dict, List, Optional
from datetime import datetime, timedelta
from enum import Enum
from fastmcp import FastMCP, Context
from fastmcp.server.elicitation import AcceptedElicitation, DeclinedElicitation, CancelledElicitation
from mcp.types import TextContent
# MCP server instance
mcp = FastMCP("Travel Booking Agent with AI")
# Enumerations
class TravelType(str, Enum):
BUSINESS = "business"
LEISURE = "leisure"
FAMILY = "family"
ADVENTURE = "adventure"
class BudgetRange(str, Enum):
BUDGET = "budget"
MID_RANGE = "mid-range"
LUXURY = "luxury"
# Simulated database of destinations
DESTINATIONS_DB = {
"paris": {
"name": "Paris, France",
"base_price": 850,
"highlights": ["Eiffel Tower", "Louvre", "Notre-Dame", "Champs-Élysées"],
"best_season": "Spring/Fall",
"travel_time": "2-3 hours from Spain"
},
"tokio": {
"name": "Tokio, Japan",
"base_price": 1200,
"highlights": ["Shibuya", "Traditional temples", "Advanced technology", "Unique gastronomy"],
"best_season": "Spring/Fall",
"travel_time": "11-14 hours from Spain"
},
"new york": {
"name": "New York, United States",
"base_price": 650,
"highlights": ["Central Park", "Broadway", "Statue of Liberty", "Times Square"],
"best_season": "All year round",
"travel_time": "5-6 hours from Europe"
},
"bali": {
"name": "Bali, Indonesia",
"base_price": 900,
"highlights": ["Tropical beaches", "Hindu temples", "Rice fields", "Spa and wellness"],
"best_season": "April-October",
"travel_time": "15-20 hours from Spain"
}
}
# Storage for bookings
bookings: Dict[str, Dict[str, Any]] = {}
def extract_elicitation_value(elicitation_data):
"""Helper to extract value from elicitation response"""
if isinstance(elicitation_data, dict) and "value" in elicitation_data:
return elicitation_data["value"]
return elicitation_data
@mcp.tool
async def intelligent_travel_booking_agent(context: Context) -> str:
"""
Intelligent travel booking agent that combines elicitacion
for critical decisions and sampling for AI personalization.
"""
booking_id = f"BK{datetime.now().strftime('%Y%m%d%H%M%S')}"
booking_data = {"id": booking_id, "timestamp": datetime.now().isoformat()}
await context.info(f"Starting new booking: {booking_id}")
# STEP 1: Elicitation - Basic travel information
await context.info("Collecting basic travel information...")
# Travel type
travel_type_result = await context.elicit(
message="What type of trip are you planning? Options: business, leisure, family, adventure",
response_type=TravelType
)
if not isinstance(travel_type_result, AcceptedElicitation):
return "🚫 Booking cancelled: Travel type not specified"
travel_type_value = extract_elicitation_value(travel_type_result.data)
booking_data["travel_type"] = travel_type_value
# Desired destination
destination_result = await context.elicit(
message="What is your desired destination? Options: Paris, Tokyo, New York, Bali, or other",
response_type=str
)
if not isinstance(destination_result, AcceptedElicitation):
return "🚫 Booking incomplete: Destination not specified"
destination_value = extract_elicitation_value(destination_result.data)
destination_input = destination_value.lower().strip()
booking_data["destination_input"] = destination_input
# STEP 2: Destination analysis
await context.info("Analyzing destination...")
# Determine destination using local database
destination_info = None
for key in DESTINATIONS_DB:
if key in destination_input or destination_input in key:
destination_info = DESTINATIONS_DB[key]
booking_data["destination"] = destination_info["name"]
await context.info(f"Destination found: {destination_info['name']}")
break
if not destination_info:
# For unknown destinations, use generic data
destination_info = {
"name": destination_input.title(),
"base_price": 800,
"highlights": ["Main attractions", "Local culture", "Gastronomy", "Unique experiences"],
"best_season": "Depends on region",
"travel_time": "Depends on origin"
}
booking_data["destination"] = destination_info["name"]
await context.info(f"Destination not found, using generic data: {destination_info['name']}")
# STEP 3: Elicitation - Specific travel details
await context.info("Collecting specific travel details...")
# Travel dates
dates_result = await context.elicit(
message="When are you planning to travel? (format: YYYY-MM-DD or description like 'next month')",
response_type=str
)
travel_dates = "To be determined"
if isinstance(dates_result, AcceptedElicitation):
travel_dates = extract_elicitation_value(dates_result.data)
booking_data["travel_dates"] = travel_dates
# Number of travelers
travelers_result = await context.elicit(
message="How many people will be traveling?",
response_type=int
)
if not isinstance(travelers_result, AcceptedElicitation):
return "🚫 Booking incomplete: Number of travelers not specified"
num_travelers = extract_elicitation_value(travelers_result.data)
booking_data["travelers"] = num_travelers
# Budget
budget_result = await context.elicit(
message="What is your budget per person? Options: budget, mid-range, luxury",
response_type=BudgetRange
)
budget_range = BudgetRange.MID_RANGE.value
if isinstance(budget_result, AcceptedElicitation):
budget_range = extract_elicitation_value(budget_result.data)
booking_data["budget"] = budget_range
# STEP 4: Itinerary personalization
await context.info("Generating personalized itinerary...")
# Static itinerary based on travel type
if booking_data['travel_type'] == 'business':
itinerary_text = f"""💼 BUSINESS ITINERARY - {destination_info['name']} ({num_travelers} people)
DAY 1: Arrival and orientation
- Morning: Check-in hotel executive
- Afternoon: Business meetings
- Evening: Business dinner
DAY 2-3: Primary activities
- {destination_info['highlights'][0]} (executive tour)
- {destination_info['highlights'][1]} (quick visit)
- Free time for calls/meetings
DAY 4: Closing
- Last meetings
- Transfer to airport
💰 ADDITIONAL COST ESTIMATES:
- Executive meals: $400-600 EUR
- Transport premium: $200 EUR
- Activities: $300 EUR
✈️ BUSINESS TIPS:
- Hotel with business center 24/7
- SIM card local for unlimited data
- Business formal wardrobe"""
elif booking_data['travel_type'] == 'family':
itinerary_text = f"""👨‍👩‍👧‍👦 FAMILY ITINERARY - {destination_info['name']} ({num_travelers} people)
DAY 1: Smooth arrival
- Morning: Check-in family accommodation
- Afternoon: Exploration of the neighborhood
- Evening: Local authentic dinner
DAY 2-3: Primary attractions
- {destination_info['highlights'][0]} (family activity)
- {destination_info['highlights'][1]} (entertainment for kids)
- Parks and playgrounds
DAY 4: Relaxed activities
- Shopping for souvenirs
- Last photos
- Preparation for return
💰 FAMILY COST:
- Food: $600-800 EUR
- Activities: $500 EUR
- Transport: $250 EUR
- Souvenirs: $200 EUR
👨‍👩‍👧‍👦 FAMILY TIPS:
- Apartment with kitchen
- Bring snacks and entertainment
- Flexible schedules for rest"""
else:
itinerary_text = f"""🌍 PERSONALIZED ITINERARY - {destination_info['name']} ({num_travelers} people)
DAY 1: Orientation
- Arrival and check-in
- Initial exploration of the area
- Local dinner
DAY 2-3: Primary attractions
- {destination_info['highlights'][0]}
- {destination_info['highlights'][1]}
- Cultural activities
DAY 4: Unique experiences
- {destination_info['highlights'][2] if len(destination_info['highlights']) > 2 else 'Special activities'}
- Local gastronomy
- Shopping
💰 ADDITIONAL COST ESTIMATES:
- Food: $300-500 EUR per person
- Activities: $200-400 EUR per person
- Local transport: $100-150 EUR per person
📝 PRACTICAL TIPS:
- Best season: {destination_info['best_season']}
- Travel time: {destination_info['travel_time']}
- Bring camera for memories"""
booking_data["itinerary"] = itinerary_text
# STEP 5: Calculation of prices and options
await context.info("Calculating prices...")
base_price = destination_info["base_price"]
budget_multipliers = {
"budget": 0.7,
"mid-range": 1.0,
"luxury": 1.5
}
adjusted_price = int(base_price * budget_multipliers.get(budget_range.value, 1.0))
total_price = adjusted_price * num_travelers
booking_data["price_per_person"] = adjusted_price
booking_data["total_price"] = total_price
# STEP 6: Elicitation - Critical confirmation of prices
await context.info("Soliciting confirmation...")
confirmation_message = f"""
RESUMEN OF YOUR PERSONALIZED TRIP
Destination: {destination_info['name']}
Type: {booking_data['travel_type'].title()}
Travelers: {num_travelers} people
Dates: {travel_dates}
Budget: {budget_range.value.title()}
PRICES:
- Per person: ${adjusted_price:,} EUR
- Total: ${total_price:,} EUR
INCLUDES:
- Round trip flights
- Accommodation ({budget_range.value})
- Itinerary
- Support 24/7
Confirm this reservation? Options: confirm, view cheaper options, modify dates, cancel"""
confirmation_result = await context.elicit(
message=confirmation_message,
response_type=["confirm", "view cheaper options", "modify dates", "cancel"]
)
if not isinstance(confirmation_result, AcceptedElicitation):
return "🚫 Reservation not confirmed - Session ended"
user_choice = extract_elicitation_value(confirmation_result.data)
# STEP 7: Handling user response
if user_choice == "confirm":
booking_data["status"] = "confirmed"
booking_data["confirmation_time"] = datetime.now().isoformat()
bookings[booking_id] = booking_data
# Custom confirmation message (simplified version)
confirmation_message = f"""Congratulations! Your adventure is officially confirmed.
You made a great decision choosing {destination_info['name']}. Our team is excited to be part of your next journey.
WHAT COMES NOW:
- You will receive complete documentation by email in 24h
- We will contact you 48h before the trip
- You have support 24/7 during your entire journey
- Access to our mobile app with itinerary
BONUS INCLUDED:
- Digital personalized guide
- List of useful phrases in local language
- Offline map with points of interest
- Emergency contacts
Prepare for unforgettable memories!"""
return f"""
{confirmation_message}
Reservation ID: {booking_id}
Destination: {destination_info['name']}
Total: ${total_price:,} EUR
You will receive a confirmation email soon.
{itinerary_text}
For any questions: [email protected]
""".strip()
elif user_choice == "view cheaper options":
# Generar alternativas más económicas
cheaper_price = int(adjusted_price * 0.75)
cheaper_total = cheaper_price * num_travelers
alternative_confirmation = await context.elicit(
message=f"Cheaper option found: ${cheaper_price:,} per person (Total: ${cheaper_total:,}). Includes basic accommodation and flights with scale. Accept? Options: accept, reject",
response_type=["accept", "reject"]
)
if isinstance(alternative_confirmation, AcceptedElicitation) and extract_elicitation_value(alternative_confirmation.data) == "accept":
booking_data["price_per_person"] = cheaper_price
booking_data["total_price"] = cheaper_total
booking_data["option"] = "cheaper"
booking_data["status"] = "confirmed"
bookings[booking_id] = booking_data
savings = total_price - cheaper_total
return f"""
Cheaper option confirmed!
Savings: ${savings:,} EUR
Reservation ID: {booking_id}
Destination: {destination_info['name']}
Total final: ${cheaper_total:,} EUR
""".strip()
else:
return "🔄 Cheaper option rejected. You can restart the process when you want."
elif user_choice == "modify dates":
new_dates_result = await context.elicit(
message="What are your preferred dates?",
response_type=str
)
if isinstance(new_dates_result, AcceptedElicitation):
new_dates = extract_elicitation_value(new_dates_result.data)
return f"📅 Dates updated to: {new_dates}. Restart the process to see new prices and availability."
else:
return "📅 Modification of dates cancelled."
else: # cancel
return "🚫 Reservation cancelled by the user. We hope to help you in the future!"
if __name__ == "__main__":
print("🚀 Starting Intelligent Travel Booking Agent MCP...")
print("=" * 55)
print("Available tools:")
print("1. ✈️ intelligent_travel_booking_agent - Intelligent travel booking agent")
print("=" * 55)
print("🤖 Combines elicitation (confirmations) + AI sampling (recommendations)")
mcp.run()
Copied
	
Writing MCP_elicitation_server/server.py

Cliente con elicitaciónlink image 5

Ahora creamos el cliente con elicitación, va a ejecutar la tool del servidor, va a recibir las preguntas del servidor y va a devolverle las respuestas

Implementación del cliente con elicitaciónlink image 6

Creamos una clase para el cliente con elicitación.

La clase conecta con el servidor y ejecuta la tool del servidor.

Crear entorno virtual del clientelink image 7

Primero creamos la carpeta donde lo vamos a desarrollar

	
!mkdir MCP_elicitation_client
Copied

Creamos el entorno con uv

	
!cd MCP_elicitation_client && uv init .
Copied
	
Initialized project `mcp-elicitation-client` at `/Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client`

Lo iniciamos

	
!cd MCP_elicitation_client && uv venv
Copied
	
Using CPython 3.12.8
Creating virtual environment at: .venv
Activate with: source .venv/bin/activate

Instalamos las librerías necesarias

	
!cd MCP_elicitation_client && uv add fastmcp
Copied
	
Resolved 64 packages in 27ms
Installed 61 packages in 161ms ░░░░░░░░░░░░░░░░░░░░ [0/0] Installing wheels...
+ annotated-types==0.7.0
+ anyio==4.10.0
+ attrs==25.3.0
+ authlib==1.6.3
+ certifi==2025.8.3
+ cffi==2.0.0
+ charset-normalizer==3.4.3
+ click==8.2.1
+ cryptography==45.0.7
+ cyclopts==3.24.0
+ dnspython==2.8.0
+ docstring-parser==0.17.0
+ docutils==0.22
+ email-validator==2.3.0
+ exceptiongroup==1.3.0
+ fastmcp==2.12.3
+ h11==0.16.0
+ httpcore==1.0.9
+ httpx==0.28.1
+ httpx-sse==0.4.1
+ idna==3.10
+ isodate==0.7.2
+ jsonschema==4.25.1
+ jsonschema-path==0.3.4
+ jsonschema-specifications==2025.9.1
+ lazy-object-proxy==1.12.0
+ markdown-it-py==4.0.0
+ markupsafe==3.0.2
+ mcp==1.14.0
+ mdurl==0.1.2
+ more-itertools==10.8.0
+ openapi-core==0.19.5
+ openapi-pydantic==0.5.1
+ openapi-schema-validator==0.6.3
+ openapi-spec-validator==0.7.2
+ parse==1.20.2
+ pathable==0.4.4
+ pycparser==2.23
+ pydantic==2.11.9
+ pydantic-core==2.33.2
+ pydantic-settings==2.10.1
+ pygments==2.19.2
+ pyperclip==1.9.0
+ python-dotenv==1.1.1
+ python-multipart==0.0.20
+ pyyaml==6.0.2
+ referencing==0.36.2
+ requests==2.32.5
+ rfc3339-validator==0.1.4
+ rich==14.1.0
+ rich-rst==1.3.1
+ rpds-py==0.27.1
+ six==1.17.0
+ sniffio==1.3.1
+ sse-starlette==3.0.2
+ starlette==0.48.0
+ typing-extensions==4.15.0
+ typing-inspection==0.4.1
+ urllib3==2.5.0
+ uvicorn==0.35.0
+ werkzeug==3.1.1

Código del clientelink image 8

	
%%writefile MCP_elicitation_client/client.py
"""
MCP Multi-Turn Client with Elicitation + Sampling
=========================================================
This client demonstrates the use of elicitation and sampling
in an intelligent travel booking agent.
Demonstrates:
1. Elicitation for critical user decisions
2. Sampling to generate personalized recommendations with AI
3. Complete booking flow with confirmations
4. Handling complex responses (accept/reject/modify)
5. Smooth integration between human inputs and AI completions
Usage:
python client.py
"""
import asyncio
import json
from typing import Any, Dict, List, Optional
import sys
from fastmcp import Client
from fastmcp.client.transports import StdioTransport
from fastmcp.client.elicitation import ElicitResult
from fastmcp.client.sampling import SamplingParams, RequestContext as SamplingRequestContext
class ElicitationTravelClient:
"""Client that demonstrates elicitation"""
def __init__(self, server_command: List[str]):
"""
Initializes the elicitation client.
Args:
server_command: Command to execute the MCP server
"""
self.server_command = server_command
async def connect(self) -> Client:
"""Creates and connects the client to the server."""
transport = StdioTransport(
command=self.server_command[0],
args=self.server_command[1:]
)
# Configure the elicitation handler
async def elicitation_handler(message: str, response_type, params, ctx) -> ElicitResult:
"""
Handles the server's elicitation requests.
If user_scenario is None, asks for real input from the user.
If a scenario is configured, simulates automatic responses.
"""
print(f" Agent requests: {message}")
# Show options if response_type is a list
if isinstance(response_type, list):
print("Available options:")
for i, option in enumerate(response_type, 1):
print(f" {i}. {option}")
while True:
try:
choice = input(f"Your response (1-{len(response_type)}): ").strip()
choice_idx = int(choice) - 1
if 0 <= choice_idx < len(response_type):
response = response_type[choice_idx]
break
else:
print(f"❌ Please select a number from 1 to {len(response_type)}")
except ValueError:
print("❌ Please enter a valid number")
else:
# For other types, ask for direct input
response_hint = ""
if response_type == int:
response_hint = " (integer)"
elif response_type == str:
response_hint = " (text)"
response = input(f"Your response{response_hint}: ").strip()
# Convert to the correct type if necessary
if response_type == int:
try:
response = int(response)
except ValueError:
print("⚠️ Using default value: 1")
response = 1
# FastMCP expects a JSON object (dict), not a direct string
if isinstance(response, str):
return ElicitResult(action="accept", content={"value": response})
elif isinstance(response, (int, float)):
return ElicitResult(action="accept", content={"value": response})
else:
return ElicitResult(action="accept", content=response)
# Configure the sampling handler
async def sampling_handler(messages, params: SamplingParams, ctx: SamplingRequestContext):
"""
Handles the server's sampling requests (AI completions).
Simulates responses from different AI models according to the context.
"""
print(f" AI request for {self._detect_ai_task(messages, params)}:")
print(f" System: {params.system_prompt[:80]}..." if params.system_prompt else " System: Not specified")
print(f" User: {messages[0].content.text[:80]}..." if messages else " User: Empty")
# Generate simulated response according to the task type
task_type = self._detect_ai_task(messages, params)
simulated_response = self._generate_ai_response(task_type, messages, params)
print(f"AI responds: {simulated_response[:100]}...")
from mcp.types import TextContent
return TextContent(text=simulated_response, type="text")
client = Client(
transport,
elicitation_handler=elicitation_handler,
sampling_handler=sampling_handler
)
return client
async def demo_interactive_booking(self, client: Client) -> None:
"""Interactive real demo - the user introduces their own responses."""
print(" " + "*" * 50)
print("Demo: Real Interactive Booking")
print("*" * 50)
try:
result = await client.call_tool("intelligent_travel_booking_agent", {})
print(f" Interactive booking result:")
print(result.content[0].text)
except Exception as e:
print(f"❌ Error in interactive booking: {str(e)}")
async def interactive_demo():
"""Interactive demo where the user chooses the type of traveler."""
# Verify command line arguments
if len(sys.argv) != 2:
print(f"Usage: python {sys.argv[0]} <path_to_fastmcp_server_script>")
sys.exit(1)
print("=" * 60)
print("Intelligent Travel Booking Agent with Multi-Turn Interactions")
print("=" * 60)
server_script_path = sys.argv[1]
server_command = [
"python",
server_script_path
]
client_manager = ElicitationTravelClient(server_command)
async with await client_manager.connect() as client:
print("Connected to the intelligent travel booking agent")
try:
await client_manager.demo_interactive_booking(client)
except Exception as e:
print(f"❌ Error: {str(e)}")
if __name__ == "__main__":
try:
asyncio.run(interactive_demo())
except KeyboardInterrupt:
print(" 👋 Bye!")
except Exception as e:
print(f"❌ Error: {str(e)}")
Copied
	
Writing MCP_elicitation_client/client.py

Ejecuciónlink image 9

Como el servidor y el cliente se ha hecho sobre el protocolo STDIO no necesitamos levantar el servidor, así que ejecutamos directamente el cliente

	
!cd MCP_elicitation_client && source .venv/bin/activate && uv run client.py ../MCP_elicitation_server/server.py
Copied
	
============================================================
Intelligent Travel Booking Agent with Multi-Turn Interactions
============================================================
╭────────────────────────────────────────────────────────────────────────────╮
│ │
│ _ __ ___ _____ __ __ _____________ ____ ____ │
│ _ __ ___ .'____/___ ______/ /_/ |/ / ____/ __ |___ / __ │
│ _ __ ___ / /_ / __ `/ ___/ __/ /|_/ / / / /_/ / ___/ / / / / / │
│ _ __ ___ / __/ / /_/ (__ ) /_/ / / / /___/ ____/ / __/_/ /_/ / │
│ _ __ ___ /_/ ____/____/__/_/ /_/____/_/ /_____(*)____/ │
│ │
│ │
│ FastMCP 2.0 │
│ │
│ │
│ 🖥️ Server name: Travel Booking Agent with AI │
│ 📦 Transport: STDIO │
│ │
│ 🏎️ FastMCP version: 2.12.3 │
│ 🤝 MCP SDK version: 1.14.0 │
│ │
│ 📚 Docs: https://gofastmcp.com │
│ 🚀 Deploy: https://fastmcp.cloud │
│ │
╰────────────────────────────────────────────────────────────────────────────╯
[09/15/25 20:52:44] INFO Starting MCP server 'Travel Booking ]8;id=502080;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py\server.py]8;;\:]8;id=404784;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py#1495\1495]8;;\
Agent with AI' with transport
'stdio'
Connected to the intelligent travel booking agent
**************************************************
Demo: Real Interactive Booking
**************************************************
[09/15/25 20:52:44] INFO Server log: Starting new booking: ]8;id=545502;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=910257;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
BK20250915205244
INFO Server log: Collecting basic travel ]8;id=329673;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=767066;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
information...
Agent requests: What type of trip are you planning? Options: business, leisure, family, adventure
Your response:

Vemos que primero pregunta por el tipo de viaje, elegimos business

	
!cd MCP_elicitation_client && source .venv/bin/activate && uv run client.py ../MCP_elicitation_server/server.py
Copied
	
============================================================
Intelligent Travel Booking Agent with Multi-Turn Interactions
============================================================
╭────────────────────────────────────────────────────────────────────────────╮
│ │
│ _ __ ___ _____ __ __ _____________ ____ ____ │
│ _ __ ___ .'____/___ ______/ /_/ |/ / ____/ __ |___ / __ │
│ _ __ ___ / /_ / __ `/ ___/ __/ /|_/ / / / /_/ / ___/ / / / / / │
│ _ __ ___ / __/ / /_/ (__ ) /_/ / / / /___/ ____/ / __/_/ /_/ / │
│ _ __ ___ /_/ ____/____/__/_/ /_/____/_/ /_____(*)____/ │
│ │
│ │
│ FastMCP 2.0 │
│ │
│ │
│ 🖥️ Server name: Travel Booking Agent with AI │
│ 📦 Transport: STDIO │
│ │
│ 🏎️ FastMCP version: 2.12.3 │
│ 🤝 MCP SDK version: 1.14.0 │
│ │
│ 📚 Docs: https://gofastmcp.com │
│ 🚀 Deploy: https://fastmcp.cloud │
│ │
╰────────────────────────────────────────────────────────────────────────────╯
[09/15/25 20:54:25] INFO Starting MCP server 'Travel Booking ]8;id=94017;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py\server.py]8;;\:]8;id=573315;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py#1495\1495]8;;\
Agent with AI' with transport
'stdio'
Connected to the intelligent travel booking agent
**************************************************
Demo: Real Interactive Booking
**************************************************
[09/15/25 20:54:25] INFO Server log: Starting new booking: ]8;id=528137;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=704323;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
BK20250915205425
INFO Server log: Collecting basic travel ]8;id=706305;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=977937;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
information...
Agent requests: What type of trip are you planning? Options: business, leisure, family, adventure
Your response: business
Agent requests: What is your desired destination? Options: Paris, Tokyo, New York, Bali, or other
Your response:

Vemos que ahora pregunta por la ciudad de destino, elegimos Paris

	
!cd MCP_elicitation_client && source .venv/bin/activate && uv run client.py ../MCP_elicitation_server/server.py
Copied
	
============================================================
Intelligent Travel Booking Agent with Multi-Turn Interactions
============================================================
╭────────────────────────────────────────────────────────────────────────────╮
│ │
│ _ __ ___ _____ __ __ _____________ ____ ____ │
│ _ __ ___ .'____/___ ______/ /_/ |/ / ____/ __ |___ / __ │
│ _ __ ___ / /_ / __ `/ ___/ __/ /|_/ / / / /_/ / ___/ / / / / / │
│ _ __ ___ / __/ / /_/ (__ ) /_/ / / / /___/ ____/ / __/_/ /_/ / │
│ _ __ ___ /_/ ____/____/__/_/ /_/____/_/ /_____(*)____/ │
│ │
│ │
│ FastMCP 2.0 │
│ │
│ │
│ 🖥️ Server name: Travel Booking Agent with AI │
│ 📦 Transport: STDIO │
│ │
│ 🏎️ FastMCP version: 2.12.3 │
│ 🤝 MCP SDK version: 1.14.0 │
│ │
│ 📚 Docs: https://gofastmcp.com │
│ 🚀 Deploy: https://fastmcp.cloud │
│ │
╰────────────────────────────────────────────────────────────────────────────╯
[09/15/25 20:56:32] INFO Starting MCP server 'Travel Booking ]8;id=161535;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py\server.py]8;;\:]8;id=465925;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py#1495\1495]8;;\
Agent with AI' with transport
'stdio'
Connected to the intelligent travel booking agent
**************************************************
Demo: Real Interactive Booking
**************************************************
[09/15/25 20:56:32] INFO Server log: Starting new booking: ]8;id=211309;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=952259;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
BK20250915205632
INFO Server log: Collecting basic travel ]8;id=264744;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=868015;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
information...
Agent requests: What type of trip are you planning? Options: business, leisure, family, adventure
Your response: business
Agent requests: What is your desired destination? Options: Paris, Tokyo, New York, Bali, or other
Your response: Paris
[09/15/25 20:56:56] INFO Server log: Analyzing destination... logging.py:40
INFO Server log: Destination found: Paris, France logging.py:40
INFO Server log: Collecting specific travel details... logging.py:40
Agent requests: When are you planning to travel? (format: YYYY-MM-DD or description like 'next month')
Your response:

Ahora pregunta por la fecha de viaje, elegimos next month

	
!cd MCP_elicitation_client && source .venv/bin/activate && uv run client.py ../MCP_elicitation_server/server.py
Copied
	
============================================================
Intelligent Travel Booking Agent with Multi-Turn Interactions
============================================================
╭────────────────────────────────────────────────────────────────────────────╮
│ │
│ _ __ ___ _____ __ __ _____________ ____ ____ │
│ _ __ ___ .'____/___ ______/ /_/ |/ / ____/ __ |___ / __ │
│ _ __ ___ / /_ / __ `/ ___/ __/ /|_/ / / / /_/ / ___/ / / / / / │
│ _ __ ___ / __/ / /_/ (__ ) /_/ / / / /___/ ____/ / __/_/ /_/ / │
│ _ __ ___ /_/ ____/____/__/_/ /_/____/_/ /_____(*)____/ │
│ │
│ │
│ FastMCP 2.0 │
│ │
│ │
│ 🖥️ Server name: Travel Booking Agent with AI │
│ 📦 Transport: STDIO │
│ │
│ 🏎️ FastMCP version: 2.12.3 │
│ 🤝 MCP SDK version: 1.14.0 │
│ │
│ 📚 Docs: https://gofastmcp.com │
│ 🚀 Deploy: https://fastmcp.cloud │
│ │
╰────────────────────────────────────────────────────────────────────────────╯
[09/15/25 20:59:47] INFO Starting MCP server 'Travel Booking ]8;id=446100;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py\server.py]8;;\:]8;id=325661;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py#1495\1495]8;;\
Agent with AI' with transport
'stdio'
Connected to the intelligent travel booking agent
**************************************************
Demo: Real Interactive Booking
**************************************************
[09/15/25 20:59:47] INFO Server log: Starting new booking: ]8;id=322003;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=198612;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
BK20250915205947
INFO Server log: Collecting basic travel ]8;id=449057;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=203031;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
information...
Agent requests: What type of trip are you planning? Options: business, leisure, family, adventure
Your response: business
Agent requests: What is your desired destination? Options: Paris, Tokyo, New York, Bali, or other
Your response: Paris
[09/15/25 20:56:56] INFO Server log: Analyzing destination... logging.py:40
INFO Server log: Destination found: Paris, France logging.py:40
INFO Server log: Collecting specific travel details... logging.py:40
Agent requests: When are you planning to travel? (format: YYYY-MM-DD or description like 'next month')
Your response: next month
Agent requests: How many people will be traveling?
Your response:

Pregunta por el número de personas, elegimos 1

	
!cd MCP_elicitation_client && source .venv/bin/activate && uv run client.py ../MCP_elicitation_server/server.py
Copied
	
============================================================
Intelligent Travel Booking Agent with Multi-Turn Interactions
============================================================
╭────────────────────────────────────────────────────────────────────────────╮
│ │
│ _ __ ___ _____ __ __ _____________ ____ ____ │
│ _ __ ___ .'____/___ ______/ /_/ |/ / ____/ __ |___ / __ │
│ _ __ ___ / /_ / __ `/ ___/ __/ /|_/ / / / /_/ / ___/ / / / / / │
│ _ __ ___ / __/ / /_/ (__ ) /_/ / / / /___/ ____/ / __/_/ /_/ / │
│ _ __ ___ /_/ ____/____/__/_/ /_/____/_/ /_____(*)____/ │
│ │
│ │
│ FastMCP 2.0 │
│ │
│ │
│ 🖥️ Server name: Travel Booking Agent with AI │
│ 📦 Transport: STDIO │
│ │
│ 🏎️ FastMCP version: 2.12.3 │
│ 🤝 MCP SDK version: 1.14.0 │
│ │
│ 📚 Docs: https://gofastmcp.com │
│ 🚀 Deploy: https://fastmcp.cloud │
│ │
╰────────────────────────────────────────────────────────────────────────────╯
[09/15/25 21:00:52] INFO Starting MCP server 'Travel Booking ]8;id=656645;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py\server.py]8;;\:]8;id=131308;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py#1495\1495]8;;\
Agent with AI' with transport
'stdio'
Connected to the intelligent travel booking agent
**************************************************
Demo: Real Interactive Booking
**************************************************
[09/15/25 21:00:52] INFO Server log: Starting new booking: ]8;id=64387;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=680560;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
BK20250915210052
INFO Server log: Collecting basic travel ]8;id=68449;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=601001;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
information...
Agent requests: What type of trip are you planning? Options: business, leisure, family, adventure
Your response: business
Agent requests: What is your desired destination? Options: Paris, Tokyo, New York, Bali, or other
Your response: Paris
[09/15/25 20:56:56] INFO Server log: Analyzing destination... logging.py:40
INFO Server log: Destination found: Paris, France logging.py:40
INFO Server log: Collecting specific travel details... logging.py:40
Agent requests: When are you planning to travel? (format: YYYY-MM-DD or description like 'next month')
Your response: next month
Agent requests: How many people will be traveling?
Your response: 1
Agent requests: What is your budget per person? Options: budget, mid-range, luxury
Your response:

Y por último pregunta por el presupuesto, elegimos budget

	
!cd MCP_elicitation_client && source .venv/bin/activate && uv run client.py ../MCP_elicitation_server/server.py
Copied
	
============================================================
Intelligent Travel Booking Agent with Multi-Turn Interactions
============================================================
╭────────────────────────────────────────────────────────────────────────────╮
│ │
│ _ __ ___ _____ __ __ _____________ ____ ____ │
│ _ __ ___ .'____/___ ______/ /_/ |/ / ____/ __ |___ / __ │
│ _ __ ___ / /_ / __ `/ ___/ __/ /|_/ / / / /_/ / ___/ / / / / / │
│ _ __ ___ / __/ / /_/ (__ ) /_/ / / / /___/ ____/ / __/_/ /_/ / │
│ _ __ ___ /_/ ____/____/__/_/ /_/____/_/ /_____(*)____/ │
│ │
│ │
│ FastMCP 2.0 │
│ │
│ │
│ 🖥️ Server name: Travel Booking Agent with AI │
│ 📦 Transport: STDIO │
│ │
│ 🏎️ FastMCP version: 2.12.3 │
│ 🤝 MCP SDK version: 1.14.0 │
│ │
│ 📚 Docs: https://gofastmcp.com │
│ 🚀 Deploy: https://fastmcp.cloud │
│ │
╰────────────────────────────────────────────────────────────────────────────╯
[09/15/25 21:02:06] INFO Starting MCP server 'Travel Booking ]8;id=110664;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py\server.py]8;;\:]8;id=283411;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py#1495\1495]8;;\
Agent with AI' with transport
'stdio'
Connected to the intelligent travel booking agent
**************************************************
Demo: Real Interactive Booking
**************************************************
[09/15/25 21:02:06] INFO Server log: Starting new booking: ]8;id=714510;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=891173;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
BK20250915210206
INFO Server log: Collecting basic travel ]8;id=262915;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=817621;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
information...
Agent requests: What type of trip are you planning? Options: business, leisure, family, adventure
Your response: business
Agent requests: What is your desired destination? Options: Paris, Tokyo, New York, Bali, or other
Your response: Paris
[09/15/25 20:56:56] INFO Server log: Analyzing destination... logging.py:40
INFO Server log: Destination found: Paris, France logging.py:40
INFO Server log: Collecting specific travel details... logging.py:40
Agent requests: When are you planning to travel? (format: YYYY-MM-DD or description like 'next month')
Your response: next month
Agent requests: How many people will be traveling?
Your response: 1
Agent requests: What is your budget per person? Options: budget, mid-range, luxury
Your response: budget
[09/15/25 21:01:55] INFO Server log: Generating personalized itinerary... logging.py:40
INFO Server log: Calculating prices... logging.py:40
INFO Server log: Soliciting confirmation... logging.py:40
Agent requests:
RESUMEN OF YOUR PERSONALIZED TRIP
Destination: Paris, France
Type: Business
Travelers: 1 people
Dates: next month
Budget: Budget
PRICES:
- Per person: $595 EUR
- Total: $595 EUR
INCLUDES:
- Round trip flights
- Accommodation (budget)
- Itinerary
- Support 24/7
Confirm this reservation? Options: confirm, view cheaper options, modify dates, cancel
Your response:

Muestra un posible viaje y nos pregunta si lo queremos confirmar, elegimos confirm

	
!cd MCP_elicitation_client && source .venv/bin/activate && uv run client.py ../MCP_elicitation_server/server.py
Copied
	
============================================================
Intelligent Travel Booking Agent with Multi-Turn Interactions
============================================================
╭────────────────────────────────────────────────────────────────────────────╮
│ │
│ _ __ ___ _____ __ __ _____________ ____ ____ │
│ _ __ ___ .'____/___ ______/ /_/ |/ / ____/ __ |___ / __ │
│ _ __ ___ / /_ / __ `/ ___/ __/ /|_/ / / / /_/ / ___/ / / / / / │
│ _ __ ___ / __/ / /_/ (__ ) /_/ / / / /___/ ____/ / __/_/ /_/ / │
│ _ __ ___ /_/ ____/____/__/_/ /_/____/_/ /_____(*)____/ │
│ │
│ │
│ FastMCP 2.0 │
│ │
│ │
│ 🖥️ Server name: Travel Booking Agent with AI │
│ 📦 Transport: STDIO │
│ │
│ 🏎️ FastMCP version: 2.12.3 │
│ 🤝 MCP SDK version: 1.14.0 │
│ │
│ 📚 Docs: https://gofastmcp.com │
│ 🚀 Deploy: https://fastmcp.cloud │
│ │
╰────────────────────────────────────────────────────────────────────────────╯
[09/15/25 21:04:20] INFO Starting MCP server 'Travel Booking ]8;id=960192;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py\server.py]8;;\:]8;id=627123;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/server/server.py#1495\1495]8;;\
Agent with AI' with transport
'stdio'
Connected to the intelligent travel booking agent
**************************************************
Demo: Real Interactive Booking
**************************************************
[09/15/25 21:04:20] INFO Server log: Starting new booking: ]8;id=204873;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=342279;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
BK20250915210420
INFO Server log: Collecting basic travel ]8;id=995160;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py\logging.py]8;;\:]8;id=505961;file:///Users/macm1/Documents/web/portafolio/posts/MCP_elicitation_client/.venv/lib/python3.12/site-packages/fastmcp/client/logging.py#40\40]8;;\
information...
Agent requests: What type of trip are you planning? Options: business, leisure, family, adventure
Your response: business
Agent requests: What is your desired destination? Options: Paris, Tokyo, New York, Bali, or other
Your response: Paris
[09/15/25 20:56:56] INFO Server log: Analyzing destination... logging.py:40
INFO Server log: Destination found: Paris, France logging.py:40
INFO Server log: Collecting specific travel details... logging.py:40
Agent requests: When are you planning to travel? (format: YYYY-MM-DD or description like 'next month')
Your response: next month
Agent requests: How many people will be traveling?
Your response: 1
Agent requests: What is your budget per person? Options: budget, mid-range, luxury
Your response: budget
[09/15/25 21:01:55] INFO Server log: Generating personalized itinerary... logging.py:40
INFO Server log: Calculating prices... logging.py:40
INFO Server log: Soliciting confirmation... logging.py:40
Agent requests:
RESUMEN OF YOUR PERSONALIZED TRIP
Destination: Paris, France
Type: Business
Travelers: 1 people
Dates: next month
Budget: Budget
PRICES:
- Per person: $595 EUR
- Total: $595 EUR
INCLUDES:
- Round trip flights
- Accommodation (budget)
- Itinerary
- Support 24/7
Confirm this reservation? Options: confirm, view cheaper options, modify dates, cancel
Your response: confirm
Interactive booking result:
Congratulations! Your adventure is officially confirmed.
You made a great decision choosing Paris, France. Our team is excited to be part of your next journey.
WHAT COMES NOW:
- You will receive complete documentation by email in 24h
- We will contact you 48h before the trip
- You have support 24/7 during your entire journey
- Access to our mobile app with itinerary
BONUS INCLUDED:
- You will receive complete documentation by email in 24h
- We will contact you 48h before the trip
- You have support 24/7 during your entire journey
- Access to our mobile app with itinerary
BONUS INCLUDED:
- Digital personalized guide
- List of useful phrases in local language
- Offline map with points of interest
- Emergency contacts
Prepare for unforgettable memories!
Reservation ID: BK20250915205523
Destination: Paris, France
Total: $595 EUR
You will receive a confirmation email soon.
💼 BUSINESS ITINERARY - Paris, France (1 people)
DAY 1: Arrival and orientation
- Morning: Check-in hotel executive
- Afternoon: Business meetings
- Evening: Business dinner
DAY 2-3: Primary activities
- Eiffel Tower (executive tour)
- Louvre (quick visit)
- Free time for calls/meetings
DAY 4: Closing
- Last meetings
- Transfer to airport
💰 ADDITIONAL COST ESTIMATES:
- Executive meals: $400-600 EUR
- Transport premium: $200 EUR
- Activities: $300 EUR
✈️ BUSINESS TIPS:
- Hotel with business center 24/7
- SIM card local for unlimited data
- Business formal wardrobe
For any questions: [email protected]

Vemos que el servidor le ha ido pidiendo los datos al usuario poco a poco para poder realizar una reserva lo más personalizada posible.

Seguir leyendo

MCP Durability: Servidor y Cliente con Persistencia para Tareas de Larga Duración

MCP Durability: Servidor y Cliente con Persistencia para Tareas de Larga Duración

Aprende a crear un servidor y cliente MCP con durabilidad para tareas de larga duración. Tutorial completo sobre Model Context Protocol con persistencia de datos usando SQLite, gestión de tareas en background y monitoreo en tiempo real. Implementa migración de datos, procesamiento por lotes y entrenamiento de modelos ML que sobreviven a reinicios del servidor. Código Python con FastMCP, recursos, herramientas y patrones de durabilidad para aplicaciones enterprise.

Stream información en MCP: Guía Completa para Actualizaciones de Progreso en Tiempo Real con FastMCP

Stream información en MCP: Guía Completa para Actualizaciones de Progreso en Tiempo Real con FastMCP

Aprende cómo implementar streaming en tiempo real en aplicaciones MCP (Model Context Protocol) usando FastMCP. Esta guía completa te muestra cómo crear servidores y clientes MCP que soportan actualizaciones de progreso e información streaming para tareas de larga duración. Construirás herramientas habilitadas para streaming que proporcionan retroalimentación en tiempo real durante el procesamiento de datos, subida de archivos, tareas de monitoreo y otras operaciones que requieren mucho tiempo. Descubre cómo usar StreamableHttpTransport, implementar manejadores de progreso con Context y crear barras de progreso visuales que mejoran la experiencia del usuario al trabajar con aplicaciones MCP que requieren retroalimentación continua.

Últimos posts -->

¿Has visto estos proyectos?

Horeca chatbot

Horeca chatbot Horeca chatbot
Python
LangChain
PostgreSQL
PGVector
React
Kubernetes
Docker
GitHub Actions

Chatbot conversacional para cocineros de hoteles y restaurantes. Un cocinero, jefe de cocina o camaeror de un hotel o restaurante puede hablar con el chatbot para obtener información de recetas y menús. Pero además implementa agentes, con los cuales puede editar o crear nuevas recetas o menús

Naviground

Naviground Naviground

Subtify

Subtify Subtify
Python
Whisper
Spaces

Generador de subtítulos para videos en el idioma que desees. Además a cada persona le pone su subtítulo de un color

Ver todos los proyectos -->

¿Quieres aplicar la IA en tu proyecto? Contactame!

¿Quieres mejorar con estos tips?

Últimos tips -->

Usa esto en local

Los espacios de Hugging Face nos permite ejecutar modelos con demos muy sencillas, pero ¿qué pasa si la demo se rompe? O si el usuario la elimina? Por ello he creado contenedores docker con algunos espacios interesantes, para poder usarlos de manera local, pase lo que pase. De hecho, es posible que si pinchas en alún botón de ver proyecto te lleve a un espacio que no funciona.

Flow edit

Flow edit Flow edit

Edita imágenes con este modelo de Flow. Basándose en SD3 o FLUX puedes editar cualquier imagen y generar nuevas

FLUX.1-RealismLora

FLUX.1-RealismLora FLUX.1-RealismLora
Ver todos los contenedores -->

¿Quieres aplicar la IA en tu proyecto? Contactame!

¿Quieres entrenar tu modelo con estos datasets?

short-jokes-dataset

Dataset de chistes en inglés

opus100

Dataset con traducciones de inglés a español

netflix_titles

Dataset con películas y series de Netflix

Ver más datasets -->